Phytoremediation of a Combination of Water Clover (Marsilea crenata) and Java Fern (Microsorum pteropus) for Fecal Wastewater

Diyah Warda Zakia, Hamdani Dwi Prasetyo, Husain Latuconsina

Abstract


The Fecal Sludge Treatment Plant (IPLT) is a wastewater treatment system that aims to treat fecal waste so it does not pollute the environment. One of the fecal waste water treatment processes at IPLT Supit Urang uses a phytoremediation process. This study aims to determine the phytoremediation ability of the combination of Water clover (Marsilea crenata) and Java fern (Microsorum pteropus) on fecal waste water in the Fecal Waste Treatment Plant. This research is an experimental research method using 3 repetitions and observed 5 times within 5 weeks with the tested parameters being total dissolved solids (TDS), Electrivc conductivity (EC), and total suspended solids (TSS). Analysis of Variance (ANOVA) was used to compare the ability of the combination of Microsorum pteropus and Marsilea crenata to reduce faecal waste between weeks of observation. The results showed that in general the combination of the two plant species was less effective in reducing TDS, EC and TSS content. There were significant differences in the content of the three physical parameters of water quality between weeks of observation.

Keywords: Phytoremediation, Fecal waste treatment, Water Clover (Marsilea crenata), Java ferns (Microsorum pteropus)


Full Text:

PDF

References


Wati, S. M. (2021). Optimalisasi layanan lumpur tinja terjadwal (LLTT) IPLT Supit Urang Kota Malang (Doctoral dissertation, UIN Sunan Ampel Surabaya).

Sharma, S., & Vasudevan, P. (2020). Salt Tolerance Mechanism in Plant for Phytoremediation of Heavy Metals: A Review. Journal Environmental Technology & Innovation, 20, 101079.

Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N. V., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews, 171(June), 621–645. https://doi.org/10.1016/j.earscirev.2017.06.005

Musapana, S., Dewi, E. R. S., & Rahayu, R. C. 2020. Efektivitas Semanggi air (Marsilea crenata) Terhadap Kadar TSS Pada Fitoremediasi Limbah Cair Tahu. Florea: Jurnal Biologi Dan Pembelajarannya, 7(2), 92-97.

Lan, X. Y., Yan, Y. Y., Yang, B., Li, X. Y., & Xu, F. L. 2019. Subcellular distribution of cadmium in a novel potential aquatic hyperaccumulator–Microsorum pteropus. Environmental pollution, 248, 1020-1027.

Riyanto, A. (2023). Fitoremediasi Kayu Apu, Eceng Gondok, dan Bambu Air untuk Menurunkan Kadar BOD Air Limbah Pabrik Tahu. Jurnal Ilmu Kesehatan Masyarakat, 12(02), 162-170.

Picauly, M. (2021). FITOREMEDIASI DENGAN CONSTRUCTED WETLAND MENGGUNAKAN Eichhornia crassipes (Mart) Solms, Pistia stratiotes L. DAN Equisetum hyemale L., UNTUK MENGOLAH LIMBAH CAIR DOMESTIK PERUMAHAN BTN SERTA PENGARUHNYA PADA PERTUMBUHAN CAISIM (Brassica juncea L.) (Doctoral dissertation, Universitas Timor).

Siswandari, A. M. (2016). Fitoremediasi Phospat Limbah Cair Laundry Menggunakan Tanaman Melati Air (Echinodorus paleafolius) dan Bambu Air (Equisetum hyemale) sebagai Sumber Belajar Biologi (Doctoral dissertation, University of Muhammadiyah Malang).

Rulitasari, D., & Rachmadiarti, F. (2020). Semanggi Air (Marsilea crenata) Sebagai Agen Fitoremediasi LAS Detergen. LenteraBio: Berkala Ilmiah Biologi, 9(2), 99-104.

Lee, C. H., Kim, D. k., & Park, J.S. (2018). Evaluation of dissolved oxygen production and nutrisi removal of Scirpus validus on an artificial wetland. Journal of Environmental Management, 222, 120-126.

Putri, R. A., Hidayat, N., & Sugiharto, R. 2018. The ability of Marsilea crenata in reducing nitrate and phosphate concentration in domestic wastewater. IOP Conference Series: Earth and Environmental Science, 195(1), 012041.

Rachmadiarti, F., & Trimulyono, G. (2019). Phytoremediation capability of water clover (Marsilea crenata (L). Presl.) in synthetic Pb solution. Applied Ecology and Environmental Research, 17(4), 9609-9619

Umar, M., Abdullahi, U. S,. & Faruq, U. Z. 2019. Assessment of water quality parameter and their health implication in selected boreholes in Yola, Adamawa State, Nigeria. Journal of environmental health science & engineering, 17(2), 515-524

Ma'arif, B., Muti'ah, R., Suryadinata, A., Nashichuddin, A., & Karawid, G. E. 2020. Analisis Kandungan Logam Berat Cd, Hg, dan Pb Daun Semanggi (Marsilea crenata Presl.) di Desa Semen, Kecamatan Pagu, Kabupaten Kediri. Journal of Islamic Pharmacy, 5(2), 53-56.

Hidayati, N. (2005). Fitoremediasi dan potensi tumbuhan hiperakumulator. Hayati Journal of Biosciences, 12(1), 35-40.

Srivastava, S., Thakur, S., & Singh, A. 2017. Phytoremediation potential of aquatic macrophytes for removal of heavy metals from industrial effluent: A riview. Journal of environmental Management, 193, 196-208.

Zhu, H., Zhang, Q., Zhang, Y., & Guo, X. 2019. Effect of pH on nitrate removal and microbial communities in constructed wetlands. Ecological Engineering, 136, 1-8.

Mulati, H., Mamat, A., Aili Jiang, N., Jiang, L., Li, N., Hu, Y., & Su, Y. (2023). Electrokinetic-Assisted Phytoremediation of Pb-Contaminated Soil: Influences of Periodic Polarity Reversal Direct Current Field. Sustainability, 15(11), 8439.

Yuan, L., Guo, P., Guo, S., Wang, J., & Huang, Y. (2021). Influence of electrical fields enhanced phytoremediation of multi-metal contaminated soil on soil parameters and plants uptake in different soil sections. Environmental Research, 198, 111290.

Salimi, M., Amin, M. M., Ebrahimi, A., Ghazifard, A., & Najafi, P. (2012). Influence of electrical conductivity on the phytoremediation of contaminated soils to Cd 2+ and Zn 2+. International Journal of Environmental Health Engineering, 1(1), 11.

Castiglione, S., Oliva, G., Vigliotta, G., Novello, G., Gamalero, E., Lingua, G., ... & Guarino, F. (2021). Effects of compost amendment on glycophyte and halophyte crops grown on saline soils: Isolation and characterization of rhizobacteria with plant growth promoting features and high salt resistance. Applied Sciences, 11(5), 2125.

Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1), 18.

Ghasemi, M., Guo, B., Darabi, K., Wang, T., Wang, K., Huang, C. W., ... & Amassian, A. (2023). A multiscale ion diffusion framework sheds light on the diffusion–stability–hysteresis nexus in metal halide perovskites. Nature Materials, 22(3), 329-337.

Purnamawati, K. Y., Suyasa, I. B., & Mahardika, I. G. (2015). Penurunan Kadar Rhodamin B Dalam Air Limbah Dengan Biofiltrasi Sistem Tanaman. Ecotrophic, 9(2), 46-51.

Latuconsina, H., & Prasetyo, H. D. (2022). Analisis Kualitas Air Berdasarkan Paremeter Fisika dan Kimia di Perairan Sungai Patrean Kabupaten Sumenep. AQUACOASTMARINE: Journal of Aquatic and Fisheries Sciences, 1(2), 76-84.

Dixit, R., Wasiullah, X., Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., ... & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability, 7(2), 2189-2212.

Hussain, A., Hussain, M., dan Hussain, F. (2019) Phytoremediation of water Pollution: A Review of Research. Journal of Chemical Society of Pakistan, 41(5), 892-902.

Mohd Nizam, N. U., Mohd Hanafiah, M., Mohd Noor, I., & Abd Karim, H. I. (2020). Efficiency of five selected aquatic plants in phytoremediation of aquaculture wastewater. Applied Sciences, 10(8), 2712.

Ilmannafian, A. G., Darmawan, M. I., & Kiptiah, M. (2022). Pengaruh Fitoremediasi dengan Kombinasi Tanaman pada Kadar BOD dan COD Limbah Sasirangan. Jurnal Teknologi Agro-Industri, 9(1).

Al- Isawi, S.A., Al- Ansari, N.A., Ewaid, S.H., & Knutsson, S (2015). Efficiency of constructed wetland for the treatment of industrial wastewater. Journal of Water Resource and Protection, 7(12), 979-989.doi: 10.4236/jwarp.2015.712080.

Al Kholif, M., Istaharoh, I., Sutrisno, J., & Widyastuti, S. (2021). Penerapan Teknologi Fitoremediasi untuk Menghilangkan Kadar COD dan TSS pada Air

Dhote, P., Mishra, S., & Mishra, V. (2017). Heavy Metal Accumulation and Tolerance of Ferns in Relation to Phytoremediation. In Phytoremediation (pp. 31-50). Springer, Chan. Doi: 10.1007/978-3-319-72371-6-2.

Fatimah, A., Lestari, W. P., & Setyorini, D. (2018). Kejenuhan dalam Fitoremediasi. Jurnal Pendidikan Ilmiah. Vol 10. No.3.

Hadatu, T. (2020). Alternatif Revitalisasi Instalasi Pengolahan Lumpur Tinja (IPLT) Supit Urang Kota Malang. Jurnal Purifikasi, 20(1), 40-53.




DOI: http://dx.doi.org/10.33474/jimsum.v1i2.22568

Refbacks

  • There are currently no refbacks.


Publisher:
Fakultas Matematika dan Ilmu pengetahuan Alam Universitas Islam Malang
Jl MT. Haryono No.193, Gedung B Lt. 1.

Editorial Address:
Jalan Mayjen Haryono No.193, Dinoyo, Kec. Lowokwaru, Kota Malang, Jawa Timur 65144


Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.